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Abstract— In contrast to quadruped robots that can navi-
gate diverse terrains using a “blind” policy, humanoid robots
require accurate perception for stable locomotion due to their
high degrees of freedom and inherently unstable morphology.
However, incorporating perceptual signals often introduces
additional disturbances to the system, potentially reducing its
robustness, generalizability, and efficiency. This paper presents
the Perceptive Internal Model (PIM), which relies on onboard,
continuously updated elevation maps centered around the robot
to perceive its surroundings. We train the policy using ground-
truth obstacle heights surrounding the robot in simulation,
optimizing it based on the Hybrid Internal Model (HIM), and
perform inference with heights sampled from the constructed
elevation map. Unlike previous methods that directly encode
depth maps or raw point clouds, our approach allows the robot
to perceive the terrain beneath its feet clearly and is less affected
by camera movement or noise. Furthermore, since depth map
rendering is not required in simulation, our method introduces
minimal additional computational costs and can train the policy
in 3 hours on an RTX 4090 GPU. We verify the effectiveness
of our method across various humanoid robots, various indoor
and outdoor terrains, stairs, and various sensor configurations.
Our method can enable a humanoid robot to continuously climb
stairs and has the potential to serve as a foundational algorithm
for the development of future humanoid control methods.

I. INTRODUCTION

The control methods for legged robots have advanced
rapidly in recent years [1], [2], driven by robot learning tech-
niques such as reinforcement learning and simulation-to-real
transfer. Among these methods, “blind” policies, which rely
solely on proprioceptive information as observations, have
proven effective in enabling quadruped robots to achieve
robust and agile locomotion across various terrains [3], [4],
[5].

Due to the higher degrees of freedom and inherently unsta-
ble morphology of humanoid robots, it is significantly more
difficult to achieve stable locomotion across diverse terrains
using a single policy, making the integration of perceptual
information essential. However, considering that incorporat-
ing perceptual signals may introduce additional disturbances
and costs to the system, potentially compromising its robust-
ness, generalizability, and efficiency, most recent efforts in
humanoid locomotion have followed the “blind” policy [6],
[7], [8] or a two-phase training paradigm [9], [10]. They may
rely on prior motion trajectories [11], [12], [13] or multi-
stage, computationally expensive training processes [9] to
execute human-like locomotion actions that can be deployed
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on real-world robots. While these approaches successfully
enable humanoid robots to walk on flat surfaces and mildly
uneven terrains such as low stairs, they often end up falling
and can not handle more challenging scenarios. Humanoid
Parkour Learning [10] exploits perceptive information but is
not able to overcome terrains requiring fine-grained footholds
such as continuous stairs.

This paper presents the Perceptive Internal Model (PIM),
which relies on onboard, continuously updated elevation
maps centered around the robot to perceive its surroundings.
It is built upon the Hybrid Internal Model (HIM) [3],
which uses batch-level contrastive learning to optimize the
simulated robot’s response, incorporating both explicit ve-
locity and implicit latent, to the robot’s successor state. To
incorporate perceptive information, PIM directly uses the
ground-truth obstacle height maps surrounding the robot as
additional observations to train the policy in simulation.
During inference, we construct the elevation map using a
LiDAR or RGB-D camera and sample points from it to align
with the policy’s observations.

In contrast to previous methods that directly encode depth
maps or raw point clouds, PIM advances in: (a) It benefits
from HIM, which supports batch-level learning, single-stage
training, and high training efficiency. (b) The elevation map
accounts for the robot’s odometry and continuously main-
tains a larger local map, allowing the robot to clearly perceive
the terrain beneath its feet. Compared to raw sensory data,
it is more robust to sensor movement and noise. (c) Ren-
dering depth images in simulation incurs additional costs in
both computational memory and efficiency, whereas directly
querying terrain heights does not. Furthermore, mitigating
the domain gap between simulated depth maps and real cam-
era data is challenging. As a result, our method introduces
minimal additional computational costs and completes policy
training within 3 hours on an RTX 4090 GPU.

We verify the effectiveness of our proposed method across
various humanoid robots, including Unitree H1 and Fourier
GR-1, on a range of challenging indoor and outdoor terrains,
such as stairs, gaps, and high platforms, and with different
sensor configurations, including Mid-360 LiDAR and Re-
alSense D435+T265 cameras. Our method enables humanoid
robots to navigate a variety of difficult terrains with a natural
gait and a high success rate. It achieves a success rate of over
90% when continuously climbing stairs. We hope that PIM
can serve as a foundational algorithm for the development
of future humanoid control algorithms.
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Fig. 1: We propose a perceptive humanoid locomotion policy capable of mastering various challenging terrains. This policy
requires only a few hours of single-stage training and can be deployed on hardware in a zero-shot manner. By integrating
a LiDAR-based elevation map, we achieve accurate perception without the need for historical vision embedding.

II. RELATED WORK

A. Learning Humanoid Locomotion

The rise of the humanoid robot industry has motivated
extensive research of humanoid locomotion in the past
year [11], [9], [13], [14], [6], [15], [16], [12], [17], [8], [18],
[7], [19], [20], [21], [10], a majority of these researches
follows the ”training in simulation & Sim2Real transfer”
procedure, akin to the methods employed in quadruped re-
search. Indeed, when it comes to humanoid robots, there is an
emphasis on performing human-like movements [12], [22].
To achieve this, [11], [7], [13] utilize prior motion trajectories
to learn natural whole-body motion while walking on diverse
flat grounds. Despite the expressive motions demonstrated

in these studies, subsequent research has indicated that
learning from scratch can also yield coordinated whole-body
movement [20], [10], especially when the task is focused on
traversing challenging terrains.

On the other hand, learning a robust legged locomotion
policy requires the prediction of accurate robot states from
accessible observations. Given that humanoid robots typ-
ically have higher dimensions of action and observation
space, recent works have proposed different training dia-
grams to address this issue: [8] incorporates linear veloc-
ity into observations from a separate state estimator, [10],
[9] encompasses multi-stage training process to narrow the
sim2real gap, [6] predicts the states from observation as part
of a denoising process.



Unlike the previous works, we introduce a novel loco-
motion policy that accomplishes state prediction utilizing
perceptive information, thereby eliminating the necessity
for additional training stages or explicit decoding of the
predicted states.

B. Perceptive Legged Locomotion

Previous research on quadrupeds has formulated several
successful systems that introduce exteroceptive sensors into
the locomotion policy [23], [24], [25], [26]. These policies,
which either receive heightmaps or depth images, have
demonstrated that integrating a more comprehensive vision
system and vision observations into the policy results in bet-
ter performance on challenging terrains [27]. In the context
of humanoid robots, while the aforementioned blind policies
have demonstrated robust performance on various surfaces
[7], against disturbances [11], [12], and on simple stairs [6],
a comprehensive vision-aided policy is necessary to achieve
perceptive locomotion. A significant challenge in perceptive
locomotion is reducing the perception gap during sim2real
transfer. Existing research [10] employs an extra phase of
training to simulate the extensive hardware noise. However,
this approach compromises perception accuracy and prevents
the policy from accomplishing tasks that demand more
precise perception, such as stair climbing.

Compared to existing methods, we propose a more com-
prehensive perceptive locomotion system that achieves more
precise hardware perception by incorporating a LiDAR-
based elevation map. The integration of a robot-centered
elevation map eliminates the need for introducing vision
into the historical observation sequence and achieves a more
comprehensive state prediction. Extensive experiments on
terrains involving stairs, gaps, and platforms underscore the
superiority of the proposed method compared to existing
studies.

III. METHODOLOGY

A. Framework Overview

Compared to quadruped robots, humanoid robots have
significantly lower stability due to their morphology. The
perceptive information is necessary for the control system.
It needs to determine the movements of its actuators for
a desired velocity given its proprioceptive information and
perceptive information. We model the humanoid locomotion
task as a sequential decision problem. The entire framework
is depicted in Fig. 2, we construct a perceptive internal model
that utilizes both proprioceptive information and perceptive
information for state estimation and optimize the policy with
PPO [28].

B. Observations

The policy observations ot consist of commands, pro-
prioceptive information, perceptive information, and action
of last timestep at−1. The commands are the desired ve-
locity ct = [vcx, v

c
y, ω

c
yaw] indicates the linear velocity in

longitudinal and lateral directions, and the angular velocity
in the horizontal direction, respectively. The proprioceptive

information includes its joint position θt, joint velocity θ̇t,
base angular velocity ωt and gravity direction in robot
frame gt. The perceptive information pt is an elevation
map around the robot. We divide these observations into
two parts, non-perceptive part on

t and perceptive part op
t ,

i.e. on
t = [ct, ωt,gt, θt, θ̇t,at−1] and op

t = [pt]. Unlike the
policy, the critic is allowed to access privileged information
such as the linear velocity vt of the robot at the training stage
and provide a more accurate estimation of state values.

C. Preliminary: Hybrid Internal Model

HIM (Hybrid Internal Model) [3] provides accurate state
estimation and sim2real ability. Basically, HIM estimates the
robot’s linear velocity in the next timestep and propriocep-
tive information in a latent space given its proprioceptive
observation history. The linear velocity estimation is trained
with simple regression to the ground truth linear velocity
obtained from the simulator. The next step proprioceptive in-
formation prediction is trained through contrastive learning.
HIM considers a pair of on

t+1 and on
t−H:t from the same

trajectory as a positive pair and others as negative pairs. The
pairs are optimized by swapping assignments tasks similar
to SwAV[29].

D. Perceptive Internal Model

a) Elevation Maps: In the real-world experiments, we
employ the elevation map module [27] to capture perceptive
observations as demonstrated in Fig. 3. It requires both
odometry and the ground point cloud to generate a grid-
based representation of ground heights. Unlike applications
involving quadrupeds, it is critical to ensure that the z-
axis of the map frame aligns with the direction of gravity.
Thus, we implement an initial rotation of the map frame to
ensure alignment with the average acceleration direction(i.e.
gravity direction). Additionally, the point cloud is processed
to filter out points based on height, preserving only the
ground points. The filtered point cloud and odometry data are
then inputted into the elevation map module to produce the
grid-based height map in the map frame. We test elevation
maps with two sensor setups: the first setup utilized a single
Mid-360 LiDAR to provide both odometry, integrated via
FAST-LIO [30], [31], and point cloud data. The second setup
employed a Realsense T265 camera for odometry and a
Realsense D435 camera for point cloud acquisition. While
both setups provide accurate elevation maps during stable
locomotion, the LiDAR-based setup demonstrated enhanced
robustness in scenarios involving rapid or irregular move-
ments.

b) Elevation Sampling: We sample 96 points in the
frame of the robot aligning its z-axis to the negative direction
of gravity. The points are distributed in a 0.8m × 1.2m
square with the robot as the center. These points’ relative
z coordinates to the base link are used as our perceptive
input.

c) Terrain-based Perceptive Internal Model: To make
the most of perceptive information, we not only let the
policy use it for foothold planning but also use it for state
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Fig. 2: Overview of our framework. Within PIM, we integrate perceptive information into the state predictor to achieve more
comprehensive and accurate state prediction. A LiDAR-based elevation map serves as the perception model, enabling more
precise perception alignment between simulation and real-world environments.
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Fig. 3: Terrian Perception module implemented by a single
LiDAR. The map frame overlaps the initial position of the
torso link and is fixed with the world. The colored grid map
demonstrates the height of the terrain in the map frame.

estimation, which we concluded as PIM (Perceptive Internal
Model). PIM is similar to HIM, however, instead of using
proprioceptive observation history to estimate the robot’s
next state, current perceptive observation op

t is concatenated
with the proprioceptive observation history on

t−H:t to provide
more information for more accurate estimation of next-step
state since terrain plays an important role in robot state
transfer. The effectiveness is shown in Section IV-A.

E. Action Curriculum

We introduce a curriculum on action space to simplify the
training. To be more specific, we choose some of the joints
that are less important in the locomotion task, i.e., joints of

the robot’s arm, and joints of the robot’s waist. We set the
range of these joints to zero and increase their range as the
training goes on.

F. Symmetry Regularization

We also introduce a symmetry regularization technique
similar to [32] to improve the harmony of the gait. In
detail, we involve three operators: Gn

o which flips the robot’s
proprioceptive observation with respect to the x-z plane, Gp

o

which flips the robot’s perceptive observation with respect
to the x-z plane, and Ga which flips the robot’s action with
respect to the x-z plane. Then during optimization of PIM,
we augment the data with Go. During policy optimization,
we involve two additional losses:

Lpolicy
symmetry = MSE(Ga(π(o

n
t ,o

p
t , P IM(on

t−H:t,o
p
t )),

π(Gn
o (o

n
t ), G

p
o(o

p
t ), P IM(Gn

o (o
n
t−H:t), G

p
o(o

p
t )))

Lvalue
symmetry = MSE(V (on

t ,o
p
t ), V (Gn

o (o
n
t ), G

p
o(o

p
t )))

(1)

G. Training Process

At each time, the proprioception observation history
on
t−H:t and perceptive observation op

t are fed into the
perceptive internal model to obtain an estimation of the
robot’s linear velocity v̂t+1 and a latent variable lt predicting
the robot’s next proprioception information. Then they are
fed into the policy network with current observation ot to
obtain action at. During the policy optimization process,
the perceptive internal model is frozen and we only update
the policy network and value network using PPO. After
policy optimization, we will use the collected trajectories
to optimize the perceptive internal model.



H. Reward Functions

Our reward functions guide the robot to follow certain ve-
locity commands and maintain soft contact with the ground.
Besides some reward functions borrowed from quadrupedal
locomotion, we designed some new rewards for humanoid
locomotion. For example, we wish that the distance of two
feet is not too close, then we involve the reward called feet
lateral distance, which computes the lateral distance of two
feet in the robot’s frame and penalizes distance closer than
dmin. We also wish that the feet of the humanoid robot are
parallel to the ground, so we use a reward function called feet
ground parallel by adding five sample points on each foot of
the humanoid robot, indicating the front, middle, hind, left
and right, then penalize the variance of distances of these
sample points to the ground. Detailed reward functions are
listed in Table I.

TABLE I: Rewards

Reward Equation (ri) Weight (wi)

Lin. velocity tracking exp

{
−

∥vcmd
xy −vxy∥22

σ

}
1.0

Ang. velocity tracking exp

{
−

(
ωcmd

yaw −ωyaw

)2

σ

}
1.0

Linear velocity (z) v2z -0.5
Angular velocity (xy) ∥ωxy∥22 -0.025
Orientation ∥gx∥22 + ∥gy∥22 -1.25
Joint accelerations ∥θ̈∥22 −2.5× 10−7

Joint power |τ∥θ̇|T

∥v∥22+0.2∗∥ω∥22
−2.5× 10−5

Body height w.r.t. feet (htarget − h)2 0.1

Feet clearance
∑
feet

(
p

target
z − piz

)2
· vixy -0.25

Action rate ∥at − at−1∥22 -0.01
Smoothness ∥at − 2at−1 + at−2∥22 -0.01
Feet stumble 1

{
∃i,

∣∣Fxy
i

∣∣ > 3
∣∣F z

i

∣∣} -3.0
Torques

∑
all joints

| τi
kpi

|22 −2.5× 10−6

Joint velocity
∑

all joints
θ̇i|22 −1× 10−4

Joint tracking error
∑

all joints
|θi − θtargeti |2 -0.25

Arm joint deviation
∑

arm joints
|θi − θdefaulti |2 -0.1

Hip joint deviation
∑

hip joints
|θi − θdefaulti |2 -0.5

Waist joint deviation
∑

waist joints
|θi − θdefaulti |2 -0.25

Joint pos limits
∑

all joints
outi -2.0

Joint vel limits
∑

all joints
RELU(θ̂i − θ̂max

i ) -0.1

Torque limits
∑

all joints
RELU(τ̂i − τ̂max

i ) -0.1

No fly 1{only one feet on ground} 0.25
Feet lateral distance |yBleft foot − yBright foot| − dmin 2.5
Feet slip

∑
feet

∣∣vtoot
i

∣∣ ∗ ∼ 1new contact -0.25

Feet ground parallel
∑
feet

V ar(Hi) -2.0

Feet contact force
∑
feet

RELU(F z
i − Fth) −2.5× 10−4

Feet parallel V ar(D) -2.5
Contact momentum

∑
feet

|vzi ∗ F z
i | −2.5× 10−4

Fourier GR-1

165 cm Height

55 Kg Weight

4DoF Arm

3DoF Waist

6DoF Leg

Unitree H1

180 cm Height

47 Kg Weight

4DoF Arm

1DoF Waist

5DoF Leg

Fig. 4: Robot Hardware Setups in terms of Height, Weight,
and Degree of Freedom (DoF)

Fig. 5: Estimation Loss and Terrain Level During Training

IV. RESULTS

In the experiments, we validate the efficiency and gen-
eralizability of the proposed humanoid locomotion on two
humanoid robots: Unitree H1 and Fourier GR-1 (Fig. 4), the
experiments emphasize:

• Effectiveness of Perception in estimating next-step state.
• Effectiveness of Perceptive Locomotion: We demon-

strate the proposed method successfully navigates ex-
treme terrains including stairs (≥ 0.15m), wooden
platforms (≥ 0.4m), slopes (15◦), and gaps.

• Effectiveness of the Perceptive Internal Model(PIM):
The terrain-based internal model accurately predicts the
robot’s states, enhancing the stability and adaptability of
the locomotion.

• Cross-Platform Validation: We validate the proposed
method on two different humanoid robots in challenging
environments, demonstrating its robustness in mastering
disturbances and difficult terrains.

A. PIM vs HIM

We compare the estimation accuracy of PIM and HIM,
here the difference is that PIM uses perception for estimating
while HIM does not, both of their corresponding policies use
perception for locomotion. As shown in Fig 5, where terrain
level indicates the difficulty of terrain that the robot can
traverse and estimation loss is the error between estimated
velocity and real velocity. PIM can achieve higher training
efficiency and provide higher estimation accuracy, as well as
enable robots to traverse more difficult terrain.



Fig. 6: We conducted extensive hardware experiments to validate the effectiveness of the proposed method across different
humanoid robots. (a) H1 traverses stairs with heights of 15 cm. (b) H1 consecutively steps onto a wooden platform and
jumps over a gap between two platforms. (c) We successfully deploy the proposed policy on GR1 .

B. Stairs

We validate that the proposed method enables the robot
to successfully traverse stairs with a height of 15 cm (Fig.
6-a), surpassing existing methods in the literature, such
as [6], [8], which achieve a maximum height of only 10 cm.
This demonstrates the enhanced capability of the proposed
perceptive locomotion in handling more challenging terrains.
In addition, we would like to highlight the challenge posed
by the foot length, which equals the stair width (30cm). This
constraint requires precise foot placement to avoid stepping
too far forward, which would cause the foot to get stuck
on the next step and prevent proper lifting, or stepping too
far back, which would result in a loss of balance and the
robot falling. This highlights the critical need for accurate
state prediction and perception, further demonstrating the
effectiveness of the proposed perceptive locomotion policy
in handling challenging environments with precise control.

C. High platform & gap

Compared to stair climbing, jumping onto high platforms
and between gaps demands less perception accuracy but
requires the policy to respond more rapidly to changes in
perception. As demonstrated in Fig. 6-b, H1 successfully
performs consecutive jumps onto platforms and over gaps,
which highlights the effectiveness of the proposed method in
perceptive integrated state estimation and executing extreme
parkour actions.

D. Cross-Platform Validation

In addition to H1, we applied the same training process
of the proposed method to Fourier GR-1, unlike H1, whose
ankle has only one tandem DOF, GR-1 has two DOF at
the ankles powered by parallel joints. Our method can
still enable it to traverse various terrains as demonstrated in
Fig. 6-c. This highlights the method’s robustness to different
robot configurations, such as variations in height, mass, joint
configuration, and foot design. These results suggest the



potential of the proposed method to be developed into a
generalized solution for humanoid locomotion across diverse
platforms.

E. Whole-body Movement
As a whole-body control method, we observed that the

robot performs coordinated upper-body movements to main-
tain balance without prior knowledge, particularly during
extreme actions such as jumping. In general, the robot
avoided walking with the same hand or foot during flat-
ground tests. During jumping motions, as demonstrated in the
fourth image of Fig. 6-b, the robot swings its left arm forward
heavily as its right leg jumps, maintaining balance during
these extreme actions. This outcome indicates that with
appropriate reward design and model prediction as achieved
by our method, the robot can generate simple, human-like
movements without prior data or imitation learning.

V. CONCLUSION

In this work, we propose an effective framework for
perceptive humanoid locomotion in complex terrain. The
framework includes Perceptive Internal Model(PIM) for
next-state prediction, which utilizes perceptive information in
addition to HIM. We also present some novel techniques in
humanoid locomotion including action curriculum, symmetry
regularization, and reward function design. We demonstrate
success in sim-to-real deployment on different humanoid
robots with different heights, mass, joint configurations, and
foot designs. To the best of our knowledge, this work is the
first perceptive locomotion framework that works well across
different robot platforms.
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